
The “Clockwise/Spiral Rule”

By David Anderson

There is a technique known as the “Clockwise/Spiral Rule” which enables any C programmer

to parse in their head any C declaration!

There are three simple steps to follow:

1. Starting with the unknown element, move in a spiral/clockwise direction; when

encountering the following elements replace them with the corresponding english

statements:

● [X] or [] => Array X size of... or Array undefined size of...

● (type1, type2) => function passing type1 and type2 returning...

● * => pointer(s) to...

2. Keep doing this in a spiral/clockwise direction until all tokens have been covered.

3. Always resolve anything in parenthesis first!

Example #1: Simple declaration

 +-------+

 | +-+ |

 | ^ | |

 char *str[10];

 ^ ^ | |

 | +---+ |

 +-----------+

Question we ask ourselves: What is str?

“str is an...

● We move in a spiral clockwise direction starting with ‘str’ and the first character we

see is a ‘[‘ so, that means we have an array, so…

“str is an array 10 of...
● Continue in a spiral clockwise direction, and the next thing we encounter is the ‘*’

so, that means we have pointers, so…

“str is an array 10 of pointers to...
● Continue in a spiral direction and we see the end of the line (the ‘;’), so keep going

and we get to the type ‘char’, so…

“str is an array 10 of pointers to char”

● We have now “visited” every token; therefore we are done!

Example #2: Pointer to Function declaration

 +--------------------+

 | +---+ |

 | |+-+| |

 | |^ || |

 char *(*fp)(int, float *);

 ^ ^ ^ || |

 | | +--+| |

 | +-----+ |

 +------------------------+

Question we ask ourselves: What is fp?

“fp is a...

● Moving in a spiral clockwise direction, the first thing we see is a ‘)’; therefore, fp is

inside parenthesis, so we continue the spiral inside the parenthesis and the next

character seen is the ‘*’, so…

“fp is a pointer to...
● We are now out of the parenthesis and continuing in a spiral clockwise direction, we

see the ‘(‘; therefore, we have a function, so…

“fp is a pointer to a function passing an int and a pointer to float
returning...

● Continuing in a spiral fashion, we then see the ‘*’ character, so…

“fp is a pointer to a function passing an int and a pointer to float
returning a pointer to...

● Continuing in a spiral fashion we see the ‘;’, but we haven't visited all tokens, so we

continue and finally get to the type ‘char’, so…

“fp is a pointer to a function passing an int and a pointer to float
returning a pointer to a char”

Example #3: The “Ultimate”

 +-----------------------------+

 | +---+ |

 | +---+ |+-+| |

 | ^ | |^ || |

 void (*signal(int, void (*fp)(int)))(int);

 ^ ^ | ^ ^ || |

 | +------+ | +--+| |

 | +--------+ |

 +----------------------------------+

Question we ask ourselves: What is ‘signal’?

Notice that signal is inside parenthesis, so we must resolve this first!

● Moving in a clockwise direction we see ‘(‘ so we have…

“signal is a function passing an int and a...
● Hmmm, we can use this same rule on ‘fp’, so... What is fp? fp is also inside

parenthesis so continuing we see an ‘*’, so…

fp is a pointer to...
● Continue in a spiral clockwise direction and we get to ‘(‘, so…

“fp is a pointer to a function passing int returning…”

● Now we continue out of the function parenthesis and we see void, so…

“fp is a pointer to a function passing int returning nothing (void)”

● We have finished with fp so let's catch up with ‘signal’, we now have…

“signal is a function passing an int and a pointer to a function passing
an int returning nothing (void) returning...

● We are still inside parenthesis so the next character seen is a ‘*’, so…

“signal is a function passing an int and a pointer to a function passing
an int returning nothing (void) returning a pointer to...

● We have now resolved the items within parenthesis, so continuing clockwise, we

then see another ‘(‘, so…

“signal is a function passing an int and a pointer to a function passing
an int returning nothing (void) returning a pointer to a function passing
an int returning...

● Finally we continue and the only thing left is the word ‘void’, so the final complete

definition for signal is:

“signal is a function passing an int and a pointer to a function passing
an int returning nothing (void) returning a pointer to a function passing
an int returning nothing (void)”

The same rule is applied for const and volatile. For Example:

const char *chptr;

● Now, what is chptr??

“chptr is a pointer to a char constant”

How about this one:

char * const chptr;

● Now, what is chptr??

“chptr is a constant pointer to char”

Finally:

volatile char * const chptr;

● Now, what is chptr??

“chptr is a constant pointer to a char volatile.”

Practice this rule with the examples found in K&R II on page 122.

Copyright © 1993,1994 David Anderson

This article may be freely distributed as long as the author's name and this notice are retained.

